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ABSTRACT: Pointing at the current problems concerning workflow scheduling management for lowering the hiring cost of 

cloud services, this paper has focused on task scheduling and proposed an innovative approach based on task replication with 

a change order mechanism. Most previous works, generally, utilize a series of algorithms through optimizing target hosts with 

a process cycle and then choosing the optimal target hosts to achieve minimum turnaround time. However, it does not assure 

optimum cloud service cost. Based on this argument, the paper introduces an enhanced approach for cost optimization by 

studying the task dependencies in the task network of the workflow job and replicating the tasks on idle virtual machines. The 

workflow represented as task network shows a path with minimum idle time; known as the critical path. It basically employs 

the modified critical path and task replication. The simulation outcome shows that; the proposed algorithm decreases the 

execution time and cost for the given scientific workflow. 
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1. INTRODUCTION 

Cloud computing has been emerging as one of the most 

powerful, valuable, and encouraging research directions after 

grid computing and distributed computing [3, 4]. It provides 

cloud services concerning infrastructure, software, and 

platforms for users through the Internet. The services operate 

on an on-demand & commercial basis. The most significant 

mode is the Infrastructure as a Service (IaaS) which focuses 

on supplying user services with a large number of physical 

hosts deployed in the cloud center. The cloud center has 

scheduler software which is responsible for efficiently 

managing resources by allocating the required computing 

resource to the requesting task. The computing resource is a 

physical host and its computing time. Each host has different 

commercial pricing based on computing power and memory. 

Cloud center is constantly receiving task requests and it is 

required to handle these tasks by choosing a particular host 

with sufficient resources. The task’s budget is also 

considered while choosing the host [5].   

Any process either scientific or business can be represented 

in the form of workflow. This workflow model of scientific 

application can be found in the areas of astronomy, physics, 

and bioinformatics. The basic way to represent the workflow 

is by describing it as a directed acyclic graph (DAG). It 

represents tasks as nodes and task dependencies as vertices 

[2]. In practice, an average scientific workflow has thousands 

of tasks. To execute these workflows, a large-scale 

computing infrastructure is required. The public cloud can be 

one of the most suitable infrastructures for these workflows.  

The public cloud in IaaS represents a pay-per-use system 

which is an important concern regarding pricing in the 

commercial cloud. For simplicity, we refer to IaaS cloud 

providers as cloud providers. The Cloud also provides 

dynamic scaling in the response to the application needs. In 

turn, it avails of many features like on-demand provisioning 

of the resources based on budgeting and optimizing billing 

costs.  

The tasks of workflows are variable in nature. The main issue 

in the workflow management system is workflow scheduling 

because it is challenging to identify the available resource 

from the central pool of resources at the time of execution of 

the workflow. Workflow scheduling represents the discovery 

of a correct execution sequence for the workflow tasks, that 

is, execution that follows the constraints which represent the 

business logic of the workflow. Mapping and management of 

workflow tasks' execution on shared resources is done with 

the help of workflow scheduling [6, 7]. 

The cloud environment does not provide regular performance 

for execution time and data transfer time. While executing 

High-Performance Computing applications in a public cloud 

environment, cloud performance varied for execution time 

and data transfer time. This variation requires the constraints 

to be applied in the provisioning and scheduling stage. It is 

needed to enable soft deadlines to be met. Therefore, we need 

to propose the application of task replication to reduce the 

effect of performance variation of Cloud resources in the 

workflow execution time. Consider the classical motivational 

example of workflow and cloud Virtual Machine model 

given by Abrishami et al. [2, 8]. 

The main contributions of this article are as follows: 

• The optimal solution of task scheduling is proposed 

for scientific workflows. 

• The development of a new scheduling algorithm 

with Improved IaaS Cloud-Partial Critical Paths 

with Replication techniques. 

• The proposed algorithm is evaluated using extensive 

simulation experiments on various performance 

metrics. 

The rest of this paper is organized as follows: in the second 

section, the related work of the approaches for workflow 

scheduling for the scientific workflows will be briefly 

introduced. In the third section, the proposed system is 

described. The fourth section describes the design and 

implementation of the proposed. The fifth section shows 

simulation experiments and results, arguing that the proposed 

approach has high efficiency. And the conclusion of the 

whole paper is made in the sixth section. 

2. Related Work 

The main aim of the task scheduling algorithm is to perform 

the effective and optimal execution of the workflow tasks. 

There is no specifically defined solution available for the 

problem of workflow task scheduling. In this process of 

scheduling the tasks, generally, list scheduling algorithms are 

used. The list scheduling algorithms focus on two distinct 
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phases – one for prioritizing the tasks and the second one for 

allotment of processors for the tasks.  

 S. Abrishami proposed an algorithm based on QoS on 

workflow scheduling on utility Grids [1]. It is called the 

Partial Critical Paths (PCP) algorithm. The goal of this 

algorithm is to create a schedule that reduces the total 

execution cost of a workflow, with satisfying a user-defined 

deadline. The algorithm comprises two main stages: Deadline 

distribution and Planning. The Deadline Distribution 

allocates the overall deadline of the workflow across 

individual tasks. In the Planning stage, it plans each task on 

the cheapest service that can execute the task before its sub-

deadline. 

There are three key distinctions between the cloud model that 

is commercial Clouds and the model of utility grids. The first 

is the dynamic or on-demand resource provisioning feature in 

the Clouds that allows this scheduling system to decide the 

nature and quantity of resources required, whereas in the 

utility Grids the resources are set and limited resources, with 

limited timeslots available. Another difference is the uniform 

bandwidth between the services of a Cloud provider, in 

contrast to the diverse bandwidth among service providers 

that are part of the Grids for utility use. Another difference is 

the pay-as-you-go pricing model that is currently used by 

commercial Clouds which charges users based on the number 

of time intervals they've utilized. 

In 2014, Murillo and Prodan developed the “Multi-Objective, 

Heterogeneous Earliest Finish Time (MOHEFT)” method to 

be an enhancement to the familiar DAG scheduler HEFT [9]. 

This is a heuristic-based algorithm that calculates a set of 

Pareto methods that users can choose the most suitable one. 

MOHEFT creates numerous transitional workflow plans, 

with each step analogous. The efficiency of these results is 

assured through dominance relationships, and their variety is 

guaranteed through the use of the metric called "crowding 

distance". This algorithm is universal in terms of the variety 

and number of goals it is able to handle but costs and 

makespan were improved when executing workflow software 

on Amazon cloud. 

In 2015, Malawski et al. propose mathematical models that 

optimize how much it costs to schedule workflows when 

there are deadline constraints. The proposed method is an 

overall optimization of data and task positioning by defining 

the scheduling issue as a "mixed integer Program". Alternate 

forms of this algorithm have been described. The first one is 

for "coarse-grained workflows" where the activities run for 

approximately an hour. The other is for the second designed 

for "fine-grained workflows", with numerous tasks that are 

short and have deadlines of less than one hour [10]. 

In 2015, the Security-aware and budget-aware (SABA) 

algorithm has been developed to plan workflows within 

multi-cloud environments [11]. The authors outline the 

concept of immovable and moveable datasets. Data that is 

movable does not have safety constraints, and therefore can 

be transferred among data centers and can be replicated when 

needed. Data that is not movable, on the other hand, are 

limited to one data center and are not able to be replicated or 

moved because of safety or price issues. The algorithm has 

three major stages. The prioritization and clustering phase is 

where activities and information are allocated to distinct data 

centers according to the workflow's irremovable datasets. 

Furthermore, the priority assignment is made to tasks based 

on the computation and I/O expenses in relation to a basic 

type of Virtual Machine. 

Considering these variances, S. Abrishami et al. adapt the 

Partial Critical Path algorithm and propose two new 

workflow scheduling algorithms applicable to IaaS Clouds 

[2]. They are called the IaaS Cloud-Partial Critical Paths (IC-

PCP) and the another is IaaS Cloud-Partial Critical Path with 

Deadline Distribution (IC-PCPD2). The IC-PCP is a single-

stage algorithm employing a similar strategy to the deadline 

distribution phase of the original PCP algorithm, except that 

it actually schedules each workflow task, instead of assigning 

a sub-deadline to it. 

Kaur et. al proposed a Deep-Q learning-based heterogeneous 

earliest-finish-time (DQ-HEFT) algorithm, which closely 

integrates the deep learning mechanism with the task 

scheduling heuristic [11]. The experiment results obtained on 

the workflows simulator demonstrate the efficiency of the 

approach compared with existing algorithms. This technique 

achieves significantly better makespan with a higher volume 

of data and can run faster compared with the existing 

workflow scheduling algorithms in a cloud computing 

environment. 

3. Proposed Problem and Formulation 

The IaaS cloud provides the facility to deploy tasks on the 

physical hosts in the resource pool. In general, the cloud data 

center chooses suitable physical hosts at random. This 

random allotment may result in a decline in responsiveness, 

quality of service, and computing power.  

Clearly, different task deployment strategies may lead to 

diverse load allocation cloud systems. It may cause different 

execution efficiency, Quality of service, pricing, and external 

service capability. 

Therefore, it is necessary to design and implement an 

efficient and load-balancing task deployment strategy in the 

cloud data center. 

The proposed work will focus to handle the problem of 

completing workflow execution within a defined deadline. 

The Improved IC-PCP with Replication (IIPR) algorithm 

solves the above issues by replicating tasks on virtual 

machines when they are not in use. The algorithm takes 

workflow XML files as input with a number of tasks. This 

XML file contains the description of tasks and the parent-

child relationship between these tasks. The algorithm 

schedules each task on a virtual machine, so that the task 

completes its execution without violating its Latest Finish 

Time. At last, the idle slots of virtual machines are found and 

the tasks are replicated on idle virtual machines when they 

are not in use. To replicate a task on VM replication 

precedence order for the task is found by considering the 

ratio between execution time and lag time, the execution time 

of the task, and cardinality of the task. 

Advantages of Proposed System 

 Replication has the benefit of reducing the deviations of 

execution time caused by performance variations.  

 IIPR algorithm decreases the total execution time of 

workflows with the increasing budget offered for 

replication.   
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Components of The Proposed System 

The following figure describes the different components with 

the flow of execution of the proposed system. 

 

 

Figure 1: Components of the proposed system 

It includes workflow selection and workflow size selection. 

Here the proper simulation parameters are input to the system 

including the workflow name and number of jobs in the 

workflow. According to this name and size, the DAX 

presentation of that workflow is selected. After selecting the 

workflow job information is exacted from the DAX. The 

second block uses these tasks' information to generate a 

Partial Critical Path. The partial Critical Path of the task is 

found by using the Early Start Time and Latest Finish time of 

the task. The task having the largest execution time and data 

transfer time is selected as a part of PCP. Finally, the PCP is 

provided as input for the IIPR algorithm. The algorithm 

founds the optimized schedule with task replication. 

Find Partial Critical Path 

The critical path of a workflow is the execution path between 

the entry and the exit nodes of the workflow with the longest 

execution time. The critical path determines the execution 

time of the workflow. The critical parent (CP) of   is the 

parent   , whose sum of the start time, data transfer time, and 

execution time to    is maximum among other parent nodes 

of  . The partial critical path (PCP) of node    is a group of 

dependent tasks in the workflow graph.  

PCP - Partial Critical Path is calculated by identifying the 

unassigned parent's task nodes. An unassigned parent node 

can be defined as a node that is not scheduled or might not 

have been assigned to any PCP. It is the algorithm that 

minimizes the cost of deadline constraint workflow. It is 

done by assigning all tasks of the Partial Critical Path to the 

virtual machine.  

Provisioning and scheduling 

Provisioning refers to discovering the number and sorts of 

virtual machines needed for the workflow execution while 

scheduling refers to discovering an order of tasks to allot to 

VMs.  

Data Transfer Aware Provisioning  

The first phase of the algorithm discovers the number & type 

of Virtual Machine. It calculates the starting time and ending 

times of each VM. For determining values of starting and 

ending time, we need to use data transfer time with the start 

time and end time of the task.  

Task Replication 

Task replication is the process of creating replicas of tasks. 

The replication of tasks can be accomplished concurrently, in 

which all replicas of the task begin to execute 

simultaneously. When tasks are replicated simultaneously 

and the child tasks begin their execution according to the 

type of schedule. Task replication can be achieved through 

the replication of tasks within either an idle phase of 

resources or exclusively on the new resources.  

4. Proposed Algorithm 

The aim of the Improved IC-PCP using the Replication 

(IIPR) algorithm is to improve the chances of successfully 

completing the process of a scientific workflow application 

within a defined timeframe within the public Cloud 

environment, which usually has high availability but 

significant performance differences, through the application 

in task replicating. At the highest degree, the proposed 

algorithm is based on the following three steps in a distinct 

order: 

1. The provision is combined from Cloud tasks and 

resources. 

2. Provisioning of data that is aware of transfer changes 

3. Task replication. 

Partial Critical Path 

The PCP algorithm reduces the cost of deadline restraint 

workflow. This is done by allocating all tasks on PCP to the 

virtual machine. Now let’s see the details of finding the PCP. 

Algorithm 1: To determine PCP for Task 

 
 

Figure 2: Flow Diagram for Partial Critical Path 

Provisioning and scheduling 

This process is required to determine the partial critical path 

of the workflow to be an element of the algorithm. The 
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provisioning and scheduling issues are closely connected due 

to the fact that the availability of VMs influences the 

scheduling process, while the scheduling influences the time 

to finish for virtual machines. Therefore, better efficiency in 

the scheduling and provisioning process can be achieved if 

both issues are addressed as a whole instead of separately. 

Data Transfer Aware Provisioning  

It determines the beginning time and the end time of every 

VM. To calculate these numbers, look at the duration of the 

data transfer with the start and end times of the scheduled 

tasks. For each non-entry-related task scheduled as the first 

step of a virtual machine and for every task that is not 

scheduled as the final job of the virtual machine the 

algorithm will meet the required time for communication by 

setting the time for the start that the virtual machine DTT(i, j) 

earlier than ST of the initial task, or setting the deadline for 

the device DTT(i, J) later than the end time of the previous 

task, based on where the additional time is required..  

To determine the start time of VM examine all tasks assigned 

to it. For each task, you must take your parent task list for 

each task, and choose the longest time for data transfer of the 

parent task. 

Also, consider the boot time to be in the range of 0 and 1. To 

determine the end time of the virtual machine, you should 

look at the list of child tasks for the tasks assigned to it. 

Choose the maximum time for data transfer of the task. 

Task Replication 

The IIPR algorithm tries to make use of idle time slots on 

virtual machines to perform the replication tasks. Replication 

is the process of creating several copies of something. 

There are three types of methods of replication, Active, 

passive, and semi-active replication. 

When Active Replication is used, the processing occurs in 

parallel on an independent host. 

In Passive replication the processing takes place at one 

location; other sites will take only the status of the execution. 

Semi-active replication does work comparable to active 

replication but only common sense is used across all 

replicates. IIPR algorithm employs semi-active replication in 

order to boost efficiency.  

In the space replication process, the same task is executed by 

different machines, while when it comes to time-replication, 

the same task is performed multiple times on one machine. 

The IIPR algorithm uses space replication. 

 

5. RESULTS AND ANALYSIS 

For the implementation of the IIPR with task replication 

algorithm, in which a public cloud environment is used. The 

algorithm has three main steps which are combined 

provisioning and scheduling, data transfer aware 

provisioning adjust, and task replication. The combined 

provisioning and scheduling step require the partial critical 

path of the task. PCP of the task is the list of critical tasks 

having the largest execution time and data transfer time. The 

proposed algorithm is implemented using the CloudSim 

package which is used to provide the simulation of the cloud 

environment. 
Table 1: Virtual Machines with Description 

VM 

Id 
MIPS RAM Bandwidth Cores 

1 1665 1741 1000 1 

2 2220 3799 2000 1 

3 1775 7680 1500 2 

4 3330 15360 3000 4 

5 3885 15360 5000 4 

6 4440 30720 6000 8 

 

Each workload is evaluated with three varying numbers of 

tasks. These varying numbers of tasks are named as 

application size. Table  details the number of tasks 

composing each application in each of the sizes: medium, 

and large. 
Table 2: Number of tasks for workflow 

Workflow Name Medium Large 

Montage 50 100 

CyberShake 50 100 

LIGO 50 100 

SIPHT 60 100 

The result analysis was conducted on a PC with a 2.0 GHz 

Intel i5 CPU and 16 GB of memory running windows 7 and 

CloudSim simulator. The CloudSim simulator can be utilized 

to build six virtual machines in one data center. The XML 

workflow files are input to the algorithm. The workflows are 

comprised of a number of tasks. These tasks are used for the 

purpose of scheduling. 

 
Table 3: Execution cost for workflow (tasks=50) 

Work 
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Method  

Without  

REP 
547.02 1045.02 8855 12668 

Rep 389.11 1033.16 8425 8253.02 

B=10 394.21 1035.07 8420 8259.02 

B=15 397.03 1038.14 8422 8263.04 

Order 

change 
382.05 1032.37 8417.07 8124.05 

 

Table 3 shows the time needed by four different workflows 

in science. In this table, Without Rep is the term used to 

describe the execution of workflows without the replication 

step. B=10 is a reference to the Replication Budget. Order 

Change indicates the workflow execution by changing the 

sequence of replication. 
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Figure 4: SIPHT and LIGO – Total Execution time (msec) 

 

It clearly shows that the workflow execution with replication 

is more efficient than that without replication in both the 

sample scientific workflows. It also shows that if the pricing 

budget is more, then the time required for the workflow 

execution is less.  

 

6. CONCLUSION 

This paper presents IIPR with a task replication algorithm. 

This algorithm is mainly concerned with scientific workflows. 

The main parameters considered are the execution within a 

user-defined deadline and lesser possible cost. The result 

shows the execution cost essential for the four scientific 

workflows. As shown in the table, execution cost gets reduced 

if task replication is done. The cost of the execution gets 

increased if we increase the replication budget. The cost of 

execution is also get reduced by changing the order of the 

replication. 
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